Package: misspi 0.1.0
misspi: Missing Value Imputation in Parallel
A framework that boosts the imputation of 'missForest' by Stekhoven, D.J. and Bühlmann, P. (2012) <doi:10.1093/bioinformatics/btr597> by harnessing parallel processing and through the fast Gradient Boosted Decision Trees (GBDT) implementation 'LightGBM' by Ke, Guolin et al.(2017) <https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision>. 'misspi' has the following main advantages: 1. Allows embrassingly parallel imputation on large scale data. 2. Accepts a variety of machine learning models as methods with friendly user portal. 3. Supports multiple initializations methods. 4. Supports early stopping that prohibits unnecessary iterations.
Authors:
misspi_0.1.0.tar.gz
misspi_0.1.0.zip(r-4.5)misspi_0.1.0.zip(r-4.4)misspi_0.1.0.zip(r-4.3)
misspi_0.1.0.tgz(r-4.4-any)misspi_0.1.0.tgz(r-4.3-any)
misspi_0.1.0.tar.gz(r-4.5-noble)misspi_0.1.0.tar.gz(r-4.4-noble)
misspi_0.1.0.tgz(r-4.4-emscripten)misspi_0.1.0.tgz(r-4.3-emscripten)
misspi.pdf |misspi.html✨
misspi/json (API)
# Install 'misspi' in R: |
install.packages('misspi', repos = c('https://catstats.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/catstats/misspi/issues
- toxicity - Toxicity Data
Last updated 3 months agofrom:6cd240dfda. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-win | NOTE | Nov 20 2024 |
R-4.5-linux | NOTE | Nov 20 2024 |
R-4.4-win | NOTE | Nov 20 2024 |
R-4.4-mac | NOTE | Nov 20 2024 |
R-4.3-win | NOTE | Nov 20 2024 |
R-4.3-mac | NOTE | Nov 20 2024 |
Dependencies:askpassbase64encbslibcachemclicodetoolscolorspacecpp11crosstalkcurldata.tabledigestdoParalleldoSNOWdplyrevaluatefansifarverfastmapfontawesomeforeachfsgenericsggplot2glmnetgluegtablehighrhtmltoolshtmlwidgetshttrisobanditeratorsjquerylibjsonliteknitrlabelinglaterlatticelazyevallifecyclelightgbmmagrittrMASSMatrixmemoisemgcvmimemunsellncvregnlmeopensslpillarpkgconfigplotlypromisespurrrR6rappdirsRColorBrewerRcppRcppEigenrlangrmarkdownsassscalesshapeSISsnowstringistringrsurvivalsystibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunyaml
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Evaluate the Imputation Quality | evaliq |
Generate Data that is Missing At Random (MAR) | missar |
Missing Value Imputation in Parallel | misspi |
Toxicity Data | toxicity |